Print Page

Sound Absorption

101x6_1All building materials have some acoustical properties in that they will all absorb, reflect or transmit sound striking them. Conventionally speaking, acoustical materials are those materials designed and used for the purpose of absorbing sound that might otherwise be reflected.

Sound absorption is defined, as the incident sound that strikes a material that is not reflected back. An open window is an excellent absorber since the sounds passing through the open window are not reflected back but makes a poor sound barrier. Painted concrete block is a good sound barrier but will reflect about 97% if the incident sound striking it.

When a sound wave strikes an acoustical material the sound wave causes the fibers or particle makeup of the absorbing material to vibrate. This vibration causes tiny amounts of heat due to the friction and thus sound absorption is accomplished by way of energy to heat conversion. The more fibrous a material is the better the absorption; conversely denser materials are less absorptive. The sound absorbing characteristics of acoustical materials vary significantly with frequency. In general low frequency sounds are very difficult to absorb because of their long wavelength. On the other hand, we are less susceptible to low frequency sounds, which can be to our benefit in many cases.

For the vast majority of conventional acoustical materials, the material thickness has the greatest impact on the material’s sound absorbing qualities. While the inherent composition of the acoustical material determines the material’s acoustical performance, other factors can be brought to bear to improve or influence the acoustical performance. Incorporating an air space behind an acoustical ceiling or wall panel often serves to improve low frequency performance.