

1 of 7

			т <u>г о г – – – – – – – – – – – – – – – – – – –</u>			
				K E P O	R T	
			Client Acoustical Su	rfaces los	4	
			Test OL 10-0936		017	Official Laboratories inc
APPEN	IDIX A: MEASURI	EMENT SETUP				
		Enviror	nment			
	Temperature Relative Humic	lity	70°F [21.1°C] 55%			
	Specimen Area	Specime	20 12 5 ft² [1 16 m²]			
	Filler Wall Area	1	52.0 ft² [4.83 m²]			
	Composite Wa	ll Area	64.5 ft² [5.99 m²]			
	Cha	mber Volume - Air	borne Transmission			
	Source Room	Volume	3284 ft ³ [93.0 m ³]	1		
	Receiving Roo	m volume	8079 It ^e [228.8 III ^e]			
INSTRU	UMENTATION					
	Description	Brand	Model	S/N		
-	Calibrator	Brüel & Kjær	Type 4230	1379712	_	
	Microphone	, Brüel & Kjær	Type 4134	1478843		
	Preamplifier	, Brüel & Kjær	Type 2639	1202479		
	Microphone	Brüel & Kjær	Type 4134	558007		
	Preamplifier	Brüel & Kjær	Type 2639	1312147		
	Power Supply	Brüel & Kjær	Type WB1057	n/a		
	Analyzer	Norsonic	Type 121	31185		
	·					
		4	_ 0			
		RVI	<u>A</u>			
		NVLAP Lab Co	u ode 200248-0			
						4

TEST REPOR

5

Orfield Laboratories Inc

of 7

Project Sound Transmission Loss Testing

Client Acoustical Surfaces, Inc.

Test OL 10-0936

APPENDIX B: CALCULATION RESULTS

Freq. Band (Hz)	Specimen T.L. (dB)	95% Conf. (dB)	Flanking Limit (dB)	STC Defic. (dB)	R _w Defic. (dB)	OITC Level (dBA)
25						
31.5	213 +		40			
40	19.3 +		40			
50	24.3 +		43			
63	26.4 ±		43			
80	31.6 +	+1.63	42			49
100	33.5 ±	±1.15	45		1.5	50
125	36.5 §±	±0.95	46	2	1.5	48
160	39.6 ±	±1.27	52	2	1.4	45
200	36.7 ‡	±1.24	53	8	7.3	49
250	41.9 ±	±0.65	56	6	5.1	44
315	44.9 ±	±0.65	60	6	5.1	42
400	50.6 ‡	±0.62	61	3	2.4	37
500	53.9 ‡	±0.40	65	1	0.1	36
630	57.1 §†	±0.50	66	-	-	32
800	59.6 §‡	±0.40	69	-	-	29
1000	60.9 §‡	±0.25	70	-	-	28
1250	59.6 ‡	±0.25	72	-	-	30
1600	58.8 ‡	±0.32	72	-	-	30
2000	63.7 ‡	±0.44	74	-	-	25
2500	66.6 ‡	±0.35	79	-	-	21
3150	69.7 ‡	±0.31	83	-	-	16
4000	72.1 *†	±0.49		-		13
5000	71.3 *†	±0.35				
6300	69.7 *†					
8000	68.4 *†					
10000	63.0 *†					
Total deficiencies below STC contour (dB)28						
STC contour [ASTM E413] 55						
Total deficiencies below R _w contour (dB) 24.4						
R _w contour [ISO 717/1] 54						
Indoor noise level from reference spectrum (dBA) 56.0					56.0	
OITC level [ASTM E1332] 44						44

* Actual transmission loss of specimen may be higher than measured at this frequency band. Signal-to-noise in the receiving room less than 5 dB, therefore the result is "an estimate of the lower limit".

§ Actual transmission loss of specimen may be higher than measured at this frequency band. Result within 10 dB of flanking limit found in separate study, therefore the result may be "potentially limited by the laboratory" due to flanking around the specimen.

[‡] Correction included in calculation due to a portion of the sound transmitted by way of the filler wall. Sound transmission through the filler wall is within correction limits established in ASTM E90.

† Actual transmission loss of specimen may be higher than measured at this frequency band. Sound transmission through the filler wall exceeds correction limits established in ASTM E90; therefore the result is "an estimate of the lower limit".

			\sim	-
		P I		

of 7

Orfield Laboratories Inc

Project Sound Transmission Loss Testing

Client Acoustical Surfaces, Inc.

Test OL 10-0936

APPENDIX D: SINGLE-NUMBER CALCULATION TO ISO 717-1

Freq. Band	R _i (R _i ≡ TL)	Ref Curve	Unfav. Deviat.	L _{i1} Spectrum	L _{i1} - R _i Level	L _{i2} Spectrum	L _{i2} - R _i Level
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
50	24.3						
63	26.4						
80	31.6						
100	33.5	35	1.5	-29.0	-62.5	-20.0	-53.5
125	36.5	38	1.5	-26.0	-62.5	-20.0	-56.5
160	39.6	41	1.4	-23.0	-62.6	-18.0	-57.6
200	36.7	44	7.3	-21.0	-57.7	-18.0	-54.7
250	41.9	47	5.1	-19.0	-60.9	-15.0	-56.9
315	44.9	50	5.1	-17.0	-61.9	-14.0	-58.9
400	50.6	53	2.4	-15.0	-65.6	-13.0	-63.6
500	53.9	54	0.1	-13.0	-66.9	-12.0	-65.9
630	57.1	55	-	-12.0	-69.1	-11.0	-68.1
800	59.6	56	-	-11.0	-70.6	-9.0	-68.6
1000	60.9	57	-	-10.0	-70.9	-8.0	-68.9
1250	59.6	58	-	-9.0	-68.6	-9.0	-68.6
1600	58.8	58	-	-9.0	-67.8	-10.0	-68.8
2000	63.7	58	-	-9.0	-72.7	-11.0	-74.7
2500	66.6	58	-	-9.0	-75.6	-13.0	-79.6
3150	69.7	58	-	-9.0	-78.7	-15.0	-84.7
4000	72.1						
5000	71.3						
		Sum =	24.4	R _{A,1} =	52.2	R _{A,2} =	47.8
		R _w =	54	C =	-2	<i>C</i> _{<i>tr</i>} =	-6

Rw(C;Ctr) = 54(-2;-6)

 $\begin{array}{l} Rw \; (C \; ; \; Ctr \; ; \; C \; 50 - 3150 \; ; \; Ctr \; , \; 50 - 3150) \; = \; 54 \; (-2 \; ; \; -6 \; ; \; -3 \; ; \; -11) \\ Rw \; (C \; ; \; Ctr \; ; \; C \; 100 - 5000 \; ; \; Ctr \; , \; 100 - 5000) \; = \; 54 \; (-2 \; ; \; -6 \; ; \; -1 \; ; \; -6) \\ Rw \; (C \; ; \; Ctr \; ; \; C \; 50 - 5000 \; ; \; Ctr \; , \; 50 - 5000) \; = \; 54 \; (-2 \; ; \; -6 \; ; \; -2 \; ; \; -11) \end{array}$

Note: The calculations in ISO 717-1 are performed based on assumed equivalency of the ASTM and the corresponding ISO test methods. The test herein is performed according to the ASTM standards. Orfield Laboratories *does not* hold accreditation for ISO 140 or ISO 717 under their NVLAP scope of accreditation.

The spectrum adaptation terms C and C_{tr} characterize performance against two specific sound sources, A-weighted pink noise and A-weighted traffic noise respectively. The standard ISO 717-1 includes a discussion of "Use of Spectrum Adaptation Terms" in Annex A (informative).

Each spectrum adaptation term may additionally be reported with extended frequency bands included. A calculation for the primary frequency range is shown above, but all available extended-frequency calculations were performed to compare against corresponding ratings of other specimens

QAIVN
NVLAP Lab Code 200248-0